
 
 

Asterisk Gateway Interface 1.4 and 
1.6 Programming 
 

 

 

 

 

 

 

 

 

Nir Simionovich 
 

 

 

 

 

 

 

 

 

Chapter No. 4 
"A Primer to AGI: Asterisk Gateway Interface" 



 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 In this package, you will find: 
A Biography of the author of the book 

A preview chapter from the book, Chapter NO.4 "A Primer to AGI: Asterisk  

Gateway Interface" 

A synopsis of the book’s content 

Information on where to buy this book 

 

 

 

 

 

 

 

About the Author 
Nir Simionovich has been involved with the open source community in Israel since 
1997. His involvement started back in 1997, when he was a student at Technion—Israel's 
Technology Institute—in Haifa. Nir quickly became involved in organizing open source 
venues and events, promoting the use of Linux and open source technologies in Israel. 

In 1998, Nir started working for an IT consulting company (artNET experts Ltd.), where 
he began to introduce Linux-based solutions for enterprises and banks. By the year 2000, 
Nir had become a SAIR/GNU certified Linux trainer and administrator, slowly educating 
the future generations of Linux admins. 

In 2001, Nir moved to the cellular content market, working for a mobile content delivery 
company (m-Wise Inc.—OTC.BB: MWIS.OB). During his commission at m-Wise, Nir 
successfully migrated a company—built purely on Windows 2000 and ColdFusion—to 
open source technologies, such as Mandrake Linux (today Mandriva), Apache Tomcat, 
and Kannel (an open source SMS/WAP gateway). 

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

 

By 2006, Nir had co-founded Atelis (Atelis PLC—AIM: ATEL). Atelis is a Digium 
distributor and integrator. During the course of 2006, Nir developed an Asteriskbased 
international operator services platform for Bezeq International, which replaced a Nortel 
DMS-300 switch. This platform is currently in use by Bezeq International in Israel, 
serving over 4000 customer a day. 

In mid 2007, Nir left Atelis to become a freelance Asterisk promoter and consultant. Nir 
is currently providing Asterisk consulting and development services for various 
companies, ranging from early-stage start-up companies, through VoIP service providers 
and VoIP equipment vendors. Nir is the founder of the Israeli Asterisk users group. In his 
spare time, he acts as the website maintainer of the group, and an Asterisk developer, 
dealing mainly with the localization aspects of Asterisk to Israel. 

Coming to 2008, Nir's company (Greenfield Technologies Ltd) won the Digium 
Innovation award at AstriCon 2008, in the pioneer division—for its implementation of a 
phone-based prayer system, allowing people from around the world to pray at the western 
wall in Jerusalem. 

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 Asterisk Gateway Interface 1.4 and 
1.6 Programming 
This is my second book, and I have to admit that I really enjoyed working on this  
book. While I enjoyed working on my previous book, (the AsteriskNow book from  
Packt Publishing), I couldn't help but feel that a portion of me has really slipped into the 
pages of this book. 

This book is a developer's book, and it is written for developers by a developer. I see 
myself as an Asterisk application developer. After developing dozens of platforms over 
the course of the past six years, all based arround Asterisk, I can honestly say that I've 
seen mistakes that I made six years ago, still being made today by novice developers. 

My role at Greenfield Technologies Ltd. (apart from being the CEO and Founder) is that 
of a development consultant, where I render various Asterisk consulting services to 
various companies in Israel and worldwide. Wherever I go, no matter what customer I 
cater, the mistakes and wrongful paradigms seem to persist. They persist due to a simple 
reason: there is no school for Asterisk developers. We have web developers, core 
developers, and database developers. But Asterisk developer is usually either a web 
developer or a core developer who is assigned a task, or in the worst case, a database 
developer entrusted with a task that he totally doesn't understand. The developers 
automatically do what they were taught to do: they superimpose their aggregated 
knowledge and experience on the Asterisk world, which usually ends up in disaster. 

Asterisk is one of the most innovative pieces of open source software created in the  
past ten years (Asterisk just hit nine years old on December 05, 2008). While Asterisk 
provides one of the most extensive telephony toolkits available today, its utilization in  
a commercial application or platform construct isn't as straightforward as it would  
seem. This book de-mystifies some of the mystic characteristics associated with Asterisk, 
while at the same exposing some of the well-guarded secrets of professional Asterisk 
platform developers. 

Asterisk requires a new skill set to be developed—one that web developers have no  
idea of and core developers completely disregard. My aim with this book is to enable  
you to learn the lessons and values that I've learned over a period of six years from a 
simple, shrink wrapped, to the point guide. I hope this book will remain on your table  
as a useful tool. 

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

 

What This Book Covers 
Chapter 1 introduces the various hardware elements required for installing your Asterisk 
PBX system, and guides you through the Asterisk installation procedure. 

Chapter 2 introduces us to the dialplan—extension, context, and syntax. It then covers 
the main part—developing a basic IVR (Interactive Voice Response) application using 
Asterisk dialplan. 

Chapter 3 takes us a bit deeper into IVR development, wherein we learn grabbing and 
processing input. The introduction of the Read application, and the conditional branching 
and execution, enable a new flexibility that was not available initially. 

Chapter 4 is all about AGI—its working, its three types, and the different frameworks. 
Finally it covers the do's and don'ts that need to be followed for the AGI script to work 
and function properly. 

Chapter 5 introduces you to your first AGI script, using the Hello World program. It 
also touches upon AGI debugging. 

Chapter 6 covers a PHP based AGI class library—PHPAGI. The chapter starts with an 
explanation of the PHPAGI file structure, and then goes on to cover simple, and finally 
more complex, PHPAGI examples. 

Chapter 7 introduces the basic elements of a FastAGI server, again using PHP  
and PHPAGI. 

Chapter 8 helps understand the Asterisk Manager Interface (AMI)—an Asterisk 
proprietary Computer Telephony Integration (CTI) interface. 

Chapter 9 takes you through the steps of developing a full click-2-call application, using 
all the concepts you've learned. Chapter 9 can be used as the basis for a large scale 
service, such as JaJah or RebTel. 

Chapter 10 tries to deal with some of the more advanced topics of developing Asterisk 
applications—mainly scalability and performance issues. By the end of this chapter,  
the reader should be well-equipped with the information to build the next Verizon  
Killer application. 

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

A Primer to AGI: Asterisk 
Gateway Interface

Explanation separates us from astonishment, which is the only gateway to the 
incomprehensible.–Eugene Ionesco 

 Eugene Ionesco, a Romanian/French playwright and dramatist is known mostly for 
his work on the "Theatre of the Absurd". Asterisk AGI (Asterisk Gateway Interface) 
enables an IVR developer to develop IVR structures that are sometimes, bordering 
on the absurd, as applications tend to become more and more complex by using AGI. 
However, there are some scenarios where common dialplan practices are no longer 
applicable, and the use of an external logic is a must. Enter AGI!

How does AGI work?
Let's examine the following diagram:

Dialplan
Asterisk

Core

Sound
Files

Channels

S
TD

IN
/S

TD
O

U
T

AGI
Script

External
Resource

External
Resource

External
Resource

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

A Primer to AGI: Asterisk Gateway Interface

[ 76 ]

As the previous diagram illustrates, an AGI script communicates with Asterisk 
via two standard data streams— STDIN (Standard Input) and STDOUT (Standard 
Output). From the AGI script point-of-view, any input coming in from Asterisk 
would be considered STDIN, while output to Asterisk would be considered 
as STDOUT. 

 The idea of using STDIN/STDOUT data streams with applications isn't a new one, 
even if you're a junior level programmer. Think of it as regarding any input from 
Asterisk with a read directive and outputting to Asterisk with a print or echo 
directive. When thinking about it in such a simplistic manner, it is clear that AGI 
scripts can be written in any scripting or programming language, ranging from 
BASH scripting, through PERL/PHP scripting, to even writing C/C++ programs to 
perform the same task.

 Let's now examine how an AGI script is invoked from within the Asterisk dialplan:

exten => _X.,1,AGI(some_script_name.agi,param1,param2,param3)

As you can see, the invocation is similar to the invocation of any other Asterisk 
dialplan application. However, there is one major difference between a regular 
dialplan application and an AGI script—the resources an AGI script consumes. 
While an internal application consumes a well-known set of resources from 
Asterisk, an AGI script simply hands over the control to an external process. Thus, 
the resources required to execute the external AGI script are now unknown, while 
at the same time, Asterisk consumes the resources for managing the execution of 
the AGI script. Now, imagine that your script is written in BASH. This means that 
every time you run an AGI script, a full BASH shell is invoked for the script. Ok, so 
BASH isn't much of a resource hog, but what about Java?  This means that the choice 
of programming language for your AGI scripts is important. Choosing the wrong 
programming language can often lead to slow systems and in most cases, non-
operational systems.

While one may argue that the underlying programming language has a direct impact 
on the performance of your AGI application, it is imperative to learn the impact 
of each. To be more exact, it's not the language itself, but more the technology of 
the programming language runtime that is important. The following table tries to 
distinguish between three programming languages' families and their applicability 
to AGI development. 

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

Chapter 4

[ 77 ]

Language Family Member Languages Details
Binary Compiled C, C++, Pascal The executable code generated can be 

highly optimized; thus, its general system 
footprint is fairly light; although these are 
the perfect choice for AGI development, the 
development process is long and tedious

Virtual Machine Java, C#, Mono Virtual machine executables incur a hefty 
toll, with the virtual machine itself usually 
consuming much memory; while languages 
like Java enable rapid development, their 
main use should be limited to FastAGI 
(described later in this book)

Interpreted PERL, PHP, Python, 
Ruby

Interpreted languages have a slightly higher 
toll than binary compiled executables; 
however, their general footprint is much 
smaller than that of the Virtual Machine 
based languages; Interpreted languages, 
such as PHP, make up for about 80% of the 
AGI development in the world, and easily fi t 
both AGI and FastAGI development 

EAGI, DeadAGI and FastAGI
AGI has three cousins—EAGI, DeadAGI, and FastAGI. We shall now explain the use 
of each of these variants, and their proper usage. 

EAGI—Enhanced Asterisk Gateway Interface
 EAGI is a slightly more advanced version of AGI, allowing the AGI script to interact 
with the inbound audio stream via fi le descriptor 3. Essentially, EAGI can be used 
to create applications that can tap into an inbound audio stream, analyze it, and 
perform tasks in accordance with that stream of data.  

The utilization of EAGI is not covered in this book. 

DeadAGI—execution on hangup
  Essentially speaking, AGI requires that an active channel be available for the 
AGI script to run. The main idea behind this is that an AGI script is supposed 
to interact with the user, or make the dialplan access various aspects outside the 
Asterisk environment. 

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

A Primer to AGI: Asterisk Gateway Interface

[ 78 ]

A question that can be asked is: "In many scenarios we would like to execute 
commands upon the fi nalization of the call, or to be more exact, upon hangup or 
error. How can we run an AGI script upon hangup or error?" Well, the answer is: 
"By means of the utilization of the DeadAGI." 

DeadAGI enables the execution of an AGI script on a hung-up channel, or a channel 
that has not been fully established yet (in general, a non-answering channel). 

While the above behaviour is true for versions 1.0.X and 1.2.X of Asterisk, 
version 1.4.X generates a warning upon the execution of a DeadAGI 
on a channel that has just been established, even if not answered. 
Asterisk 1.6.X is supposed to include a facility that will enable it to 
decide what type of AGI operation to utilize, making the DeadAGI 
application obsolete.

Let's now examine how a DeadAGI script is invoked from within the 
Asterisk dialplan:

exten => h,1,DeadAGI(some_script_name.agi,param1,param2,param3)

The invocation is similar to that of a regular AGI script. However, DeadAGI scripts 
are supposed to be executed by the h extension only, or via the 'failed' extension 
mentioned in Chapter 2. 

FastAGI—AGI execution via a TCP socket
 Technically speaking, FastAGI is different in the following context: when Asterisk 
executes an AGI script via FastAGI, the resources required for the AGI script to 
run are consumed by a completely different process, and not Asterisk. In addition, 
the communications that were previously based on internal STDIN/STDOUT 
communications are now based on a TCP socket. This means that your AGI script, 
now actually an AGI server, can be operated and maintained on a completely 
different server, enabling you to separate the application logic from the Asterisk 
dialplan logic.

Bear in mind the following that if your FastAGI server has executed 
an internal Asterisk application (for example, playback), you will 
consume the resources of both the Asterisk application and the AGI 
execution client.

Let's now examine how a FastAGI script is invoked from within the 
Asterisk dialplan:

exten => _X.,1,AGI(agi://IP_NUMBER:PORT/some_script_name.agi)

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

Chapter 4

[ 79 ]

Please note that passing arguments to the FastAGI servers is possible. However, it 
varies depending on the Asterisk version you are using.

Asterisk 1.2.X and 1.4.X
 Passing arguments to a FastAGI server from either Asterisk 1.2.X or Asterisk 1.4.X is 
performed by using an HTTP GET type request:

exten => _X.,1,AGI(agi://192.168.2.1:1048/TestAGI?exten=${EXTEN})

In this case, the FastAGI server is responsible for handling the various arguments, 
parsing them, and handling each of them correctly. 

Asterisk 1.6.X
 Passing arguments to a FastAGI server from Asterisk 1.6.X is simpler and highly 
resembles the methodology used for a regular AGI script:

exten => _X.,1,AGI(agi://192.168.2.1:1048/TestAGI|${EXTEN}|{VAR2})

In this scenario, the arguments are available via the AGI variables named 
agi_arg_1 and agi_arg_2 respectively. The previous ones are also supported. 
However, if you are using Asterisk 1.6, try to use the new methodology, in order 
to be forward compatible.

FastAGI frameworks
 As indicated above, FastAGI is a TCP socket based system, making it a client/server 
environment. As with any client/server environment that is based upon an open 
source technology, a multitude of frameworks exist in order to make our life easier 
in the development of FastAGI servers. The following is a short list of frameworks, 
available for various platforms that do just that:

Language Framework URL
.NET NAsterisk http://www.codeplex.com/nasterisk

ActiveX AstOCX http://www.pcbest.net/astocx.htm

Erlang ErlAst http://tools.assembla.com/erlast

Python FATS
StarPy

http://fats.burus.org/
http://www.vrplumber.com/programming/
starpy/

Java Asterisk-Java http://www.voip-info.org/wiki/view/
Asterisk-java

Ruby Adhearsion http://docs.adhearsion.com/display/
adhearison/Home

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

A Primer to AGI: Asterisk Gateway Interface

[ 80 ]

Others exist too; however, these are the most common ones for Asterisk 
FastAGI development.

AGI scripting frameworks
 As with any other open source project, the number of frameworks built for the 
development of AGI scripts is amazing. Considering the fact that the AGI language 
consists of less than thirty different methods, the existence of over thirty different 
scripting frameworks is amazing.

The following list contains some of the more popular frameworks for AGI scripting:

Language Framework URL
PERL Asterisk PERL 

Library
http://asterisk.gnuinter.net/

PHP PHPAGI http://sourceforge.net/projects/phpagi/

Python py-Asterisk http://py-asterisk.berlios.de/py-asterisk.
php

C libagiNow http://www.open-tk.de/libagiNow/

.NET MONO-
TONE

http://gundy.org/asterisk

The AGI application
 The following is the documentation of the AGI dialplan command, as it appears in 
the Asterisk documentation: 

  -= Info about application 'AGI' =-

[Synopsis]
Executes an AGI compliant application

[Description]
  [E|Dead]AGI(command|args): Executes an Asterisk Gateway Interface 
compliant program on a channel. AGI allows Asterisk to launch external 
programs written in any language to control a telephony channel, play 
audio, read DTMF digits, etc. by communicating with the AGI protocol 
on stdin and stdout.

  This channel will stop dialplan execution on hangup inside of this 
application, except when using DeadAGI.  Otherwise, dialplan execution 
will continue normally.

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

Chapter 4

[ 81 ]

  A locally executed AGI script will receive SIGHUP on hangup from 
the channel except when using DeadAGI. This can be disabled by setting 
the AGISIGHUP channel variable to "no" before executing the AGI 
application.

  Using 'EAGI' provides enhanced AGI, with incoming audio available 
out of band on file descriptor 3

  Use the CLI command 'agi show' to list available agi commands
  This application sets the following channel variable upon 
completion:
     AGISTATUS      The status of the attempt to the run the AGI 
script text string, one of SUCCESS | FAILURE | HANGUP

Confusing? Well, for the fi rst time you read this, it may actually be very confusing. 
Let's demystify AGI, shall we?

The AGI execution fl ow
 Once an AGI script has been invoked, a preset information fl ow is performed 
between the AGI script and Asterisk. It is imperative to understand this information 
fl ow, as the structure of your AGI script depends on this fl ow.

 The following diagram describes the steps that occur when an AGI script is executed 
from within the Asterisk dialplan:

Asterisk

Step 1
Step 2

Step 7
Step 6

Step 5

Step 4

Step 3

Dialplan Execution

AGI Termination

AGI
ScriptDialplan

User

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

A Primer to AGI: Asterisk Gateway Interface

[ 82 ]

If you are familiar with UML, the immediately preceding diagram 
may seem a little weird, as it doesn't follow the exact rules of the UML 
diagram. The diagram is meant for non-UML readers to be able to relate 
to the information.

As you can see, most of the interaction between Asterisk and our AGI script happens 
between the third and the fi fth stages,. Let's examine what happens in these stages, 
using the following dialplan example:

exten => _X.,1,Answer
exten => _X.,n,Set(DID=${EXTEN})
exten => _X.,n,Set(CLID=${CALLERID(num)})
exten => _X.,n,AGI(SomeScript.php)

As our AGI script is being executed from the Asterisk dialplan, Asterisk will pass 
a preset number of variables, along with general AGI execution information to our 
AGI script, which requires initial processing, prior to the actual AGI script execution.  

AGI Variable Description
agi_request Name of the agi script that is being called
agi_channel Channel that the call is coming from
agi_language Language that is confi gured on the server
agi_type Call type; mainly the channel type
agi_uniqueid A unique identifi er for this session
agi_callerid Caller ID number
agi_calleridname Caller ID name, where available; not supported on all channel 

types
agi_callingpres PRI Call ID presentation variable
agi_callingani2 Caller ANI2 (PRI channels), where applicable
agi_callington Caller type of number (PRI channels)
agi_callingtns Transit Network Selector (PRI channels)
agi_dnid Dialed number identifi er
agi_rdnis Redirected Dial Number ID Service (RDNIS)
agi_context Current context from which the AGI script was executed
agi_extension Extension that was called
agi_priority Current priority in the dialplan, that is, priority of the AGI script 

execution
agi_enhanced 0.0
agi_accountcode Account code

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

Chapter 4

[ 83 ]

As your script is being executed, all the information presented in the table, will 
be dumped into your script execution input, before you receive any other input 
from Asterisk.  

At the time of writing this book, the set of variables presented in the table were 
found to be correct. However, it is highly probable that by the time you read this 
book, AGI execution will include some additional variables.

Most AGI scripts may regard the above as "noise", as most AGI scripts 
will obtain the information contained within these variables from an 
external source. When using a framework, you would notice that most 
frameworks simply disregard this information, and continue execution 
after simply skipping this portion of the execution.

Once our AGI script has fi nalized the information reading from Asterisk, our 
actual AGI script operations fl ow will begin, that is, our AGI script logic will begin 
its implementation. As we've already learned, AGI uses STDIN and STDOUT to 
communicate with Asterisk. In the next chapter, we shall start working with 
an actual AGI script. However, in the meantime knowledge of these streams 
is enough. 

Once an AGI script has terminated its execution, it will return the control back to 
Asterisk for the continued execution of the Asterisk dialplan. 

The AGI methods API
 The following is a complete list of AGI methods, available to the developer via 
the AGI interface. This list was correct at the time of writing this book, although it 
may change slightly by the time you read this book. It is best to update yourself via 
the Asterisk documentation of the AGI command, or via the agi show command, 
available from your Asterisk CLI.

*CLI> agi show
              answer   Answer channel
      channel status   Returns status of the connected channel
        database del   Removes database key/value
    database deltree   Removes database keytree/value
        database get   Gets database value
        database put   Adds/updates database value
                exec   Executes a given Application
            get data   Prompts for DTMF on a channel
   get full variable   Evaluates a channel expression
          get option   Stream file, prompt for DTMF, with timeout
        get variable   Gets a channel variable

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

A Primer to AGI: Asterisk Gateway Interface

[ 84 ]

              hangup   Hangup the current channel
                noop   Does nothing
        receive char   Receives one character from channels 
                       supporting it
        receive text   Receives text from channels supporting it
         record file   Records to a given file
           say alpha   Says a given character string
          say digits   Says a given digit string
          say number   Says a given number
        say phonetic   Says a given character string with phonetics
            say date   Says a given date
            say time   Says a given time
        say datetime   Says a given time as specfied by the format 
                       given
          send image   Sends images to channels supporting it
           send text   Sends text to channels supporting it
      set autohangup   Autohangup channel in some time
        set callerid   Sets callerid for the current channel
         set context   Sets channel context
       set extension   Changes channel extension
           set music   Enable/Disable Music on hold generator
        set priority   Set channel dialplan priority
        set variable   Sets a channel variable
         stream file   Sends audio file on channel
 control stream file   Sends audio file on channel and allows the 
                       listner to control the stream
            tdd mode   Toggles TDD mode (for the deaf)
             verbose   Logs a message to the asterisk verbose log
      wait for digit   Waits for a digit to be pressed 

The ten rules of AGI development
 Developers, who are given the task of developing an AGI script for the fi rst time, 
tend to superimpose their traditional development techniques over the development 
of AGI scripts. By far, this is the most dangerous thing that can be done, as AGI 
scripting and traditional programming vary immensely. The following section will 
list the do's and don'ts that need to be followed, so that your AGI scripts work and 
function properly.

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

Chapter 4

[ 85 ]

Rule #1: An AGI script should terminate as 
fast as possible
 First-time AGI developers tend to develop their entire application within an AGI 
script. As you develop your entire application within an AGI script, you may gain the 
power of the scripting language, but will incur a cost of performance. Always make 
sure that the AGI scripts that you develop terminate their execution as fast as possible, 
returning to the dialplan as fast as possible. This concept dictates that each AGI script 
being run should behave quickly as an atomic unit—hence the name "Atomic AGI". 
We will learn the concepts of "Atomic AGI" development in Chapter 6.

Rule #2: Blocking applications have no 
place in AGI
 As a direct continuation to rule #1, you should never execute a blocking application 
from within an AGI script. Initiating a blocking application from within an AGI script 
will make your Asterisk environment explode slowly. Why is that? Because for every 
blocking application that you run from within the AGI script, you will have both your 
AGI script and the blocking application running for the duration of the block. Imagine 
that you were to initiate the Dial application from within an AGI script, and the call 
created would last over thirty minutes. For those thirty minutes, your AGI script is still 
active. This isn't much of a problem when dealing with small-scale systems. But when 
trying to run 50 concurrent scripts, be prepared for failure.

Blocking applications include the following: Dial, MeetMe, MusicOnHold, Playback 
(when dealing with long playbacks), Monitor, ChanSpy,  and other applications that 
have an unknown execution duration. 

Rule #3: Asterisk channels are 
stateful—use them
 An Asterisk channel, once operational, is like a big bucket of information. Channel 
variables can be used to carry information from your AGI script to the dialplan and 
back. The variables remain as part of the channel untill the channel is terminated, 
when memory is then freed. 

Using this "bucket" enables you to carry variables and information obtained via an 
AGI script and then pass these to an application in the dialplan. For example, imagine 
that you are developing a pre-paid platform. A decision on the call timeout is taken 
via an AGI script. However, the actual dialling of the call is performed from the 
dialplan itself.

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

A Primer to AGI: Asterisk Gateway Interface

[ 86 ]

Rule #4: AGI scripts should manipulate 
data—no more
Most developers tend to think of AGI scripting as a functional unit, meaning that 
they enclose multiple functionalities into the AGI script. While AGI is fully capable of 
performing telephony functionality, it is best to leave this functionality to the dialplan. 

Utilize your AGI script to set and reset channel variables and communicate with 
out-of-band information systems. The concept of allowing out-of-band information 
fl ow into Asterisk's operational fl ow of channel, enables new functionality and 
possibilities. Not all logic should be handled by your AGI script. Sometimes, it is 
better to use the AGI script as a data conduit, while letting an external information 
system handle the data manipulation.

Rule #5: VM based languages are bad for 
AGI scripting
 Virtual machine based programming languages' are bad for AGI scripting. Putting 
aside the rules #1 and #2, imagine that your application is built using an AGI script 
using the Java programming language. If you are familiar with Java, you most 
probably know that for each program that you execute using Java, a full Java virtual 
machine is invoked.

While this practice may seem fairly normal for information systems, Asterisk and 
IVR development vary. Imagine that our system is required to handle a maximum 
number of 120 concurrent channels, which means that the maximum number of 
concurrent AGI scripts will be 120. According to this concept, our Java environment 
will be fully invoked for each of these 120 instances. In other words, too many 
resources are being used just for the VM.

If you really feel that you want to develop AGI scripts using Java, FastAGI is the way 
to go for you.

Rule #6: Binary-compiled AGI is not always 
the answer
 While evaluating rules #1, #2 and #5, we can't but reach an almost immediate 
conclusion that we need to have our AGI script binary compiled. While in terms of 
effi ciency and performance, a binary compiled AGI may provide better performance, 
the time required to develop it may be longer. In some cases, scripting languages such 
as PHP, PERL, and Python may provide near-similar performance at a lesser cost.

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

Chapter 4

[ 87 ]

Also, when using binary compiled AGI scripts, you are always in charge of the 
memory allocation and cleanup. Even the most experienced developer can commit 
errors while dealing with memory allocation, so binary compiled AGI need not be 
the solution always.

If your system truly requires the performance edge of a binary compiled AGI, we 
encourage you to develop a prototype using a scripting language. Once you have 
your prototype working, start developing your binary version.  

Rule #7: Balance your scripts with 
dialplan logic
 While evaluating rules #1, #2 and #4, we must keep in mind that developing IVR 
systems with Asterisk resembles a high-wire balancing act. The fi ne art of balancing 
your dialplan with AGI scripts proves to be a powerful tool, especially when 
developing complex IVR systems.

Many developers tend to externalize functionality from the dialplan into AGI, while 
the same functionality can be achieved by writing dialplan macros or dialplan 
contexts. Using Asterisk's branching commands (goto, gotoif, exec, execif, gosub 
and gosubif) can easily remove redundant AGI code, passing the control from the 
AGI back to the dialplan.

When I developed my fi rst system, I was amazed at the sheer 
magnitude of the impact that rule #7 can have on a system. A system 
that was developed entirely with AGI, and a system achieving the 
same functionality using a combination of AGI and dialplan, differed 
by a magnitude of eight (instead of being able to sustain fi fteen calls, 
the system sustained 120 calls), in favour of the AGI and dialplan 
combination. Of course, your results may vary, according to your system. 

Rule #8: Balance your scripts with 
web services
 When evaluating rule #4, one may ask: "What is an out-of-band information 
system?" We shall explain now. Most Asterisk developers tend to develop their 
systems with the data information system—either embedded into their Asterisk 
server or communicating with an information system installed on the same server 
with the Asterisk server. 

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

A Primer to AGI: Asterisk Gateway Interface

[ 88 ]

While, for small systems, this proves to be both effi cient and economic, when 
developing a high-end system that requires scalability and redundancy, this 
methodology proves to be counter-productive. One of the methodologies (although 
many others exist) for interconnecting Asterisk with an out-of-band information 
system is web services. Communication to the web service is performed via AGI; the 
web-service protocol—you can use your favourite one. 

The choice of protocol isn't that important, as almost any protocol type 
used for web services would do. Be it SOAP, WSDL, XML-RPC, WDDX or 
any other, take your pick, and the performance and scalability should be 
similar in any of these.

Rule #9: Syslog is your friend—use it
 Every developer knows that using log fi les for debugging and monitoring purposes is 
a must. Be it for using a binary compiled AGI or a scripting language based AGI, make 
sure to utilize the logging facility. Trying to debug an AGI application from within the 
Asterisk console, though possible, can prove to be a tedious task. Sending log entries to 
a well-formatted log can save you much time and headache.

Scripting languages, such as PHP and PERL, do not offer a direct debugging 
facility, making the debugging of such AGI scripts even harder. Using log fi les as a 
debugging point for your AGI script will prove very useful when developing highly 
complex systems.

In order to make your syslog more readable, assign a self-created unique 
ID to each of your calls. When writing to your log, make sure that the 
unique ID appears in each log entry, so that you can trace a specifi c 
session fl ow through Asterisk. Remember, an Asterisk channel is stateful. 
The unique ID will remain as part of the channel untill it is removed from 
the system.

Rule #10: The Internet is for Asterisk
 As bad as the following may sound, if you have a problem or an idea, remember 
that someone else had almost defi nitely come across it before you did. I don't want 
to discourage you, but actually, I want you to make use of the multitude of Asterisk 
resources available on the Internet.

The amount of information relating to Asterisk and platform development that 
has been accumulated by search engines is staggering. Over the course of the past 
two years, the amount of information available has multiplied two times (at least), 
making it the best source to fi nd answers to your questions.

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

Chapter 4

[ 89 ]

Asterisk user forums exist today in almost every country around the world; in some 
countries, there is more than one forum. These forums provide fast answers and 
professional guidance, allowing you to concentrate on your development, instead of 
concentrating on obtaining information.

When I fi rst started developing AGI applications (almost six years ago), 
information was fairly scarce. While websites like www.voip-info.
org and www.asterisk.org contained most of the information, much 
of the experience of the other developers was not documented. Today, 
most of these developers write personal blogs, updated almost daily, 
with answers and techniques for almost any Asterisk related issue. User 
forums have become more and more professional, thereby making these 
your best choice for information.
Other sources of information include the Asterisk IRC channel (#asterisk 
@ irc.freenode.net), the various Asterisk mailing lists available at the 
Asterisk community website, and of course the almighty Google. 

A preface to what's coming ahead
Over the course of the forthcoming chapters, we shall begin our descent into AGI 
development. The choice of programming language for this book is PHP, due to its 
popularity and ease of development. If you feel uncomfortable with PHP, we are 
confi dent that you will be able to translate the code snippets into the programming/
scripting language of your choice. 

Chapter 5 will deal with your fi rst AGI script; think of it as your "Hello-World" 
program from "Programming 101".

Chapter 6 will introduce a PHP based AGI class library, called PHPAGI. While 
PHPAGI is a fairly old library, and is compatible with all the versions of Asterisk, 
AGI hasn't changed dramatically from one the Asterisk version to the next. By using 
PHPAGI and the nine rules we just saw, we shall show that even an old, slightly 
outdated library, can do wonders. 

Chapter 7 will introduce the basic elements of a FastAGI server, again using PHP 
and PHPAGI.

Chapter 8 will introduce the Asterisk Manager Interface (AMI), an Asterisk 
proprietary CTI (Computer Telephony Integration) interface.

Chapter 9 will take you through the steps of developing a full click-2-call application, 
using all the concepts you've learned. Chapter 9 can be used as a basis for a large 
scale service, such as JaJah or RebTel.

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 

A Primer to AGI: Asterisk Gateway Interface

[ 90 ]

Summary
We have now completed our introduction to Asterisk's AGI technology. While AGI 
proves to be a fairly simplistic development API, the usage of AGI within your 
system requires you to be fully aware of your technological barriers. Be it Asterisk 
itself, your choice of programming/scripting language, your information systems, or 
the required user interaction, all these have to come into play while developing IVR 
systems with Asterisk and AGI.

http://www.packtpub.com/asterisk-gateway-interface-programming/book


 

 

For More Information:  
www.packtpub.com/asterisk-gateway-interface-programming/book 

 
Where to buy this book 
You can buy Asterisk Gateway Interface 1.4 and 1.6 Programming from the Packt 
Publishing website: http://www.packtpub.com/asterisk-gateway-
interface-programming/book 

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please 
read our shipping policy. 

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and 
most internet book retailers. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
www.PacktPub.com

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
http://www.packtpub.com/asterisk-gateway-interface-programming/book
http://www.packtpub.com/Shippingpolicy



